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One-dimensional pattern formation with Galilean invariance near a stationary bifurcation
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One-dimensional pattern formation with Galilean symmetry is not governed by the Ginzburg-Landau equa-
tion near onset; an additional equation describing a large-scale mean flow is required. We derive these ampli-
tude equations and predict the solution amplitude. All steady patterns are unstable, with the growth of the
instability taking place on a faster time scale than the formation of the pattern itself. Numerical simulations
show that chaotic solutions are obtained, whose amplitude is consistent with our theory.

PACS numbdps): 05.45—a, 47.54+r, 02.30.Jr

In this Rapid Communication we consider one-tions have been studied previou$b~9|, some unanswered
dimensional pattern formation in a system with Galilean in-questions remain. We determine the scalings for the rms
variance. We suppose that this system is characterized bywalue ofu and the growth rate of perturbations to a regular
velocity componenti(x,t), and that in addition to the usual periodic state when is small.
space and time shift symmetries it is invariant under the Gal- Linearizing Eq.(5) and seeking solutions proportional to

ilean symmetry expt+ikx) [4,9,1(Q yields the dispersion relation
X—X+Vt, u—u+V. (1) )\:kZ[r_(l_kZ)Z], (6)
Then the general one-dimensional governing equation thatis . o ) o )
first-order in time takes the form which is shown in Fig. 1. Our interest is in the behavior of
Eq. (5) near the onset of pattern formation, wheis small.
Ug+ UUy= F( Uy, Ugy, Uygyxs « -+ ), (2)  Inthis case it is convenient to introduce a small parameter

. _ . ~ defined byr = €. For 0<e<1, there is a band of unstable
where F is an arbitrary function. If the system further satis- wayve numbers with width of orderneark=1. Furthermore,
fies the reflection symmetry for smallk the growth ratex is of orderk?. It is the interac-
tion of these two classes of modésattern modes nedt

==X U=~ @ Z1 and mean-flow modes nefr 0) that we seek to de-
then the governing equation fortakes the form scribe. , _ , ,
In the weakly nonlinear regime,<1, stationary solutions
Ug+ UUg= Uyt gl t - - - of Eq. (5) exist in the form of “rolls” given by
F B1aUxUxx T BogUxxUxxxt < - (4) u~eagexp(l+eq)ix+ 62U2+C.C., (7)
where a5, 4,812,823, ... are constants. An example of

this type is the well known Kuramoto-Sivashinsky equation'VN€re the amplitude, can be taken to be real and can be

Ug Ul = — Uy, — Uy [1,2]. evaluated by sygndard v_\/(_aakly_ nonlinear anal[gg]ﬁzAt third
The Galilean symmetry1) prohibits on the right-hand ©rder @ solvability condition givea,=6(1-4g%)™.

side of Eq.(4) any linear term inu that does not involve To analyze the stability of the rolls in E7), we write

derivatives, which in turn leads to the existence of a slowly .

evolving large-scale mode. Our aim is to describe the behav- U~ €[a+a(X,T)]exp(1+ eq)ix+c.c+ef(X,T), (8)

ior of systems such as E() near the onset of pattern for-

mation with a nonzero wave number. The amplitude equa- 0.1 T T T T T T

tions we derive are universal for such systeniShe

Kuramoto-Sivashinsky equation does not come into this cat- /\

egory since there is no separation of scales between the pat- 0

tern and the large-scale mgodéBesides systems with Gal-

ilean symmetry, another application of our work is in A

pattern-forming systems with a conservation law and the re-

flection symmetry(3) [3]. 0.1 - y
As a specific example, we consider the equation
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which has been proposed as a model for viscoelastic media FIG. 1. The growth raté. of the linear modes of Eq5) as a
[4]. Although Eq.(5) and the corresponding amplitude equa-function of wave numbek with r =0.05.
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FIG. 2. Grayscalex—t plot of a numerical solution to Ed5)
with periodic boundary conditions. The width of the domain is 60, .001
the solution is plotted for &t=<300, the number of grid points is 0 50 100 150 200 250 300
128, andr=0.1. t

FIG. 3. Mode amplitudes of the first, ninth, and tenth Fourier
components for the simulation shown in Fig. 2. The initial slow
development of the pattern is followed by a rapid instability and
then chaotic behavior at a lower amplitude.

whereX and T are scaled versions ofandt. After writing
a=Db+ic and linearizing, we find three equations for the
perturbationd, ¢, andf. Since these equations are linear we
can arbitrarily choosdd=0(1). Then a consistent scaling

can be obtained in which than its evolution, as predicted by the analysis above. The

_ 1/4 _ —1/4 _ 3l _ 3 subsequent behavior appears to show spatiotemporal chaos.
f=0(e™), c=0(e™™), X=e¥ T=e". (9 Evolution of the mode amplitudes is shown in Fig. 3, where

With this scaling, the three linearized equations are the establishment of the pattern can clearly be seen to take
place on a time scaleft) longer than that of the destruction
br=4byy—8qcy, (10)  of the pattern €%).
In attempting to characterize the behavior of a nonlinear
Cr=4Cyx—aof, (11)  partial differential equation such as E§) near the onset of
pattern formation, the usual approach is to reduce it to an
fr="fxx—2agbx. (12 amplitude equation. In many mathematical models for pat-

- ) ) ] ) tern formation in one spatial dimension, the Ginzburg-
The stability of this system is determined by seeking soluy gndau equatiofl1-13

tions proportional to expT+ilX), yielding the following
cubic for the growth rater: Ar=A+Axx—|AIPA (14)

o°+91202+ 24 %0+ 161%(1*— qad) =0. (13) s appropriate. In Eq(14), the complex amplitude\ is a
function of a large lengthscalk and a long timescalé. The

For smalll, the growth rate obeys~ (16l ané , indicat-  behavior of Eq(14) is well understood: periodic patterds
ing that there is a real positive eigenvalue tpr0 and a =Ayexp(gX) are stable provided that the wave numiger
complex conjugate pair of eigenvalues with positive real parties within the Eckhaus bang?< 1/3 [14]. However, there
for g<0. Forg>0, there is a stationary bifurcation when the are many instancg45| where the onset of pattern formation
perturbation wave number obeysl=I.=(qa2)** so the is not governed by Eq(14). In the presence of Galilean
pattern is unstable to a band of wave numbetd €1.. For  invariance, an amplitude equation must be included for a
g<0 the instability is oscillatory and a Hopf bifurcation oc- large-scale mod¢5]. Previous work[8,10] has reached a
curs wher =1 ,= (—2qa2/25)"/4, so again there is a band of Variety of conclusions about the smalkcaling of the solu-
unstable wave numbers<d<lI,. tions, which we attempt to resolve below.

Thus Eq.(5) has the property that all stationary, spatially ~We now consider how Eq14) may appropriately be ex-
periodic, small-amplitude patterns are unstable. Furthermordéended to capture the instability of periodic patterns and the
the instability of the pattern grows at a rate of ordéf,  chaotic behavior of E¢(5). The natural approach, following
which is more rapid than th®(e2) growth rate of the origi- the standard methods used to obtain 8d), is to write
nal pattern. It is also of interest that the perturbation wave .
numberl is of ordere®4, so the destabilizing mode lies out- u~eA(X, T)explix) +c.c+ef(X,T), (15
side theO(¢€) band of wave numbers where stationary solu-

)1/3

whereX = ex and T = €t. However, this leads to the follow-

tions exist. P : ; -
Given that all patterns are unstable, the question of théng inconsistent amplitude equations:
small-amplitude behavior of E¢5) remains. Figure 2 shows Ar=A+4A.x—|A|PAI36—ifAle— (fA)y, (16)
a typical numerical solution of Eq5), obtained using a
pseudospectral method. The initial condition is a small ran- fT:fXX_|A|§(_ffX, (17

dom perturbation from equilibrium. Initially, a regular pat-
tern forms, with ten waves in the periodic domain. This pat-incomplete versions of which have been given previously
tern then abruptly becomes unstable, on a shorter timescalg,6,10. The appearance of the facter* in Eq. (16) indi-



RAPID COMMUNICATIONS

PRE 62 ONE-DIMENSIONAL PATTERN FORMATION WITH . .. R1475

cates that the scalin@5) is incorrect. However, if the mean il o s
modef is rescaled to make E@16) consistent then a factor I A

e 1 instead multiplies the coupling term in EGL7) (see S

[6,16,17). :2:/}
A self-consistent scaling is obtained as follows. Since the 1F ,,,/

growth rate in Eq.(6) is of order €2, we must retain the
scaling T= €%t. If the diffusion terms are to appear in the
amplitude equations, thexi= ex. The leading coupling term u
in the A equation appears at the correct order if the large-

scale mode is of ordes?. Finally, the coupling term in thé

equation balances the other terms if #v@node is of order

€. The correct ansatz to replace E5) is therefore

u~ eA(X, T)exp(ix) +c.c+ €f(X,T). (18) 01}
The corresponding asymptotically consistent amplitude 0.01 0.1
equations are then r
Ar=A+4A.—ifA, (19 FIG. 4. Log-log plot of rms value ofi averaged over 35000
time units, from numerical simulations of E¢) with 256 grid
fr="Fyy— |A|§< (20) points and a domain size of 157. The dashed lines have slopes of

1/2, 3/4, and 1 for comparison.

Note that the stabilizing cubic term does not appear in Eq. . .
(19) at leading order. This means that Ef9) allows expo- fange O<k<1 and so the asymptotic scalitg8) no longer

. . . . . ” holds. Earlier numerical resulf8,10] suggested different
nentially growing solutions in whicl\(X,T)=AyexpT and . ; :
£(X,T)=0. However, it can be shown that these groWingscallngs(wnh the rms value ol proportional tor [10] or

. ) . L or121g))
solutions are unstable, in the following sense. By writing '

A(X,T) = Ay expT-+b(X.T)+ic(X,T), linearizing inb, ¢, andf The analysis so far has concentrated on the particular
and’seekinog solutions,with wa;/e’numbewe find' ' pattern-forming equatiofb). However, our results are more

widely applicable. For a general equation that is first order in

br=(1—412)b, (21) time and satisfies the symmetri€y) and (3), the general
form of the amplitude equatior(¢9) and(20) can be written
cr=(1—41?)c—fA expT, (220  down. Note that the action of the symmetdy is
fr=—12f—2ilbAgexpT. 23) f=f+V, A—Aexp-ivT, (24)

The solution forb is thusb= b, exp((1—41?)T) and sof in- and that Eq(3) becomes

cludes a term growing as e)@—41%)T], which is faster than X——X, A—-—-A*, f—-—f. (25

the growth of the basic state, for smdl Thus, the

X-independent solutiomyexpT rapidly becomes overtaken The general form of the asymptotic amplitude equations is

by X-dependent perturbations. Numerical simulations of Eqstherefore

(19) and(20) confirm that, in practice, solutions do not grow

exponentially in time like exf@, but remain bounded, and

:ir:)a:;[ Eg)e dynamics is very similar to that of the original equa- fr=vfyy— |A|>2(. (27)
According to the new scalin@l8), the amplitude of solu-  All other terms permitted by the symmetries are of higher

tions to Eq.(5) should scale as the 3/4 power of the forcing order. Note that there is only one free parameterin the

parameterr. In order to check the range of validity of this system, since we can rescaleT, A, andf.

asymptotic scaling, numerical simulations of E§) were In conclusion, we have examined one-dimensional sys-

carried out over a range of valuesoin a periodic domain tems with Galilean symmetry and a reflection symmetry,

large enough to contain 25 waves. The rms value of theear a stationary bifurcation with nonzero wave number. We

solution was averaged over the time of the simulation. Thénave shown that, in general, a long-wavelength mode desta-

results in Fig. 4 show an excellent agreement with the 3/4ilizes the pattern near onset. We have derived asymptoti-

scaling law over the range 0.6k <0.1. Forr>0.1, the cally consistent scalings for the pattern near onset and am-

growth rate given by Eq(6) is of a similar order over the plitude equations that capture the dynamics.

AT=A+AXX_ifA, (26)
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