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One-dimensional pattern formation with Galilean invariance near a stationary bifurcation

P. C. Matthews and S. M. Cox
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

~Received 22 June 1999!

One-dimensional pattern formation with Galilean symmetry is not governed by the Ginzburg-Landau equa-
tion near onset; an additional equation describing a large-scale mean flow is required. We derive these ampli-
tude equations and predict the solution amplitude. All steady patterns are unstable, with the growth of the
instability taking place on a faster time scale than the formation of the pattern itself. Numerical simulations
show that chaotic solutions are obtained, whose amplitude is consistent with our theory.

PACS number~s!: 05.45.2a, 47.54.1r, 02.30.Jr
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In this Rapid Communication we consider on
dimensional pattern formation in a system with Galilean
variance. We suppose that this system is characterized
velocity componentu(x,t), and that in addition to the usua
space and time shift symmetries it is invariant under the G
ilean symmetry

x→x1Vt, u→u1V. ~1!

Then the general one-dimensional governing equation th
first-order in time takes the form

ut1uux5F~ux ,uxx ,uxxx , . . . !, ~2!

whereF is an arbitrary function. If the system further sati
fies the reflection symmetry

x→2x, u→2u, ~3!

then the governing equation foru takes the form

ut1uux5a2uxx1a4uxxxx1•••

1b12uxuxx1b23uxxuxxx1•••, ~4!

where a2 ,a4 ,b12,b23, . . . are constants. An example o
this type is the well known Kuramoto-Sivashinsky equati
ut1uux52uxx2uxxxx @1,2#.

The Galilean symmetry~1! prohibits on the right-hand
side of Eq.~4! any linear term inu that does not involvex
derivatives, which in turn leads to the existence of a slow
evolving large-scale mode. Our aim is to describe the beh
ior of systems such as Eq.~4! near the onset of pattern for
mation with a nonzero wave number. The amplitude eq
tions we derive are universal for such systems.~The
Kuramoto-Sivashinsky equation does not come into this
egory since there is no separation of scales between the
tern and the large-scale mode!. Besides systems with Ga
ilean symmetry, another application of our work is
pattern-forming systems with a conservation law and the
flection symmetry~3! @3#.

As a specific example, we consider the equation

]u

]t
52

]2

]x2 F ru2S 11
]2

]x2D 2

uG2u
]u

]x
, ~5!

which has been proposed as a model for viscoelastic m
@4#. Although Eq.~5! and the corresponding amplitude equ
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tions have been studied previously@5–9#, some unanswered
questions remain. We determine the scalings for the
value ofu and the growth rate of perturbations to a regu
periodic state whenr is small.

Linearizing Eq.~5! and seeking solutions proportional t
exp(lt1ikx) @4,9,10# yields the dispersion relation

l5k2@r 2~12k2!2#, ~6!

which is shown in Fig. 1. Our interest is in the behavior
Eq. ~5! near the onset of pattern formation, whenr is small.
In this case it is convenient to introduce a small parametee,
defined byr 5e2. For 0,e!1, there is a band of unstabl
wave numbers with width of ordere neark51. Furthermore,
for smallk the growth ratel is of orderk2. It is the interac-
tion of these two classes of modes~pattern modes neark
51 and mean-flow modes neark50) that we seek to de
scribe.

In the weakly nonlinear regime,e!1, stationary solutions
of Eq. ~5! exist in the form of ‘‘rolls’’ given by

u;ea0 exp~11eq!ix1e2u21c.c., ~7!

where the amplitudea0 can be taken to be real and can
evaluated by standard weakly nonlinear analysis@9#. At third
order a solvability condition givesa056(124q2)1/2.

To analyze the stability of the rolls in Eq.~7!, we write

u;e@a01a~X,T!#exp~11eq!ix1c.c.1e f ~X,T!, ~8!

FIG. 1. The growth ratel of the linear modes of Eq.~5! as a
function of wave numberk with r 50.05.
R1473 ©2000 The American Physical Society
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whereX andT are scaled versions ofx and t. After writing
a5b1 ic and linearizing, we find three equations for th
perturbationsb, c, andf. Since these equations are linear w
can arbitrarily chooseb5O(1). Then a consistent scalin
can be obtained in which

f 5O~e1/4!, c5O~e21/4!, X5e3/4x, T5e3/2t. ~9!

With this scaling, the three linearized equations are

bT54bXX28qcX , ~10!

cT54cXX2a0f , ~11!

f T5 f XX22a0bX . ~12!

The stability of this system is determined by seeking so
tions proportional to exp(sT1ilX), yielding the following
cubic for the growth rates:

s319l 2s2124l 4s116l 2~ l 42qa0
2!50. ~13!

For smalll, the growth rate obeyss;(16l 2qa0
2)1/3, indicat-

ing that there is a real positive eigenvalue forq.0 and a
complex conjugate pair of eigenvalues with positive real p
for q,0. Forq.0, there is a stationary bifurcation when th
perturbation wave numberl obeys l 5 l c5(qa0

2)1/4, so the
pattern is unstable to a band of wave numbers 0, l , l c . For
q,0 the instability is oscillatory and a Hopf bifurcation o
curs whenl 5 l o5(22qa0

2/25)1/4, so again there is a band o
unstable wave numbers, 0, l , l o .

Thus Eq.~5! has the property that all stationary, spatia
periodic, small-amplitude patterns are unstable. Furtherm
the instability of the pattern grows at a rate of ordere3/2,
which is more rapid than theO(e2) growth rate of the origi-
nal pattern. It is also of interest that the perturbation wa
numberl is of ordere3/4, so the destabilizing mode lies ou
side theO(e) band of wave numbers where stationary so
tions exist.

Given that all patterns are unstable, the question of
small-amplitude behavior of Eq.~5! remains. Figure 2 show
a typical numerical solution of Eq.~5!, obtained using a
pseudospectral method. The initial condition is a small r
dom perturbation from equilibrium. Initially, a regular pa
tern forms, with ten waves in the periodic domain. This p
tern then abruptly becomes unstable, on a shorter times

FIG. 2. Grayscalex2t plot of a numerical solution to Eq.~5!
with periodic boundary conditions. The width of the domain is 6
the solution is plotted for 0<t<300, the number of grid points is
128, andr 50.1.
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than its evolution, as predicted by the analysis above.
subsequent behavior appears to show spatiotemporal ch
Evolution of the mode amplitudes is shown in Fig. 3, whe
the establishment of the pattern can clearly be seen to
place on a time scale (e2t) longer than that of the destructio
of the pattern (e3/2t).

In attempting to characterize the behavior of a nonlin
partial differential equation such as Eq.~5! near the onset of
pattern formation, the usual approach is to reduce it to
amplitude equation. In many mathematical models for p
tern formation in one spatial dimension, the Ginzbur
Landau equation@11–13#

AT5A1AXX2uAu2A ~14!

is appropriate. In Eq.~14!, the complex amplitudeA is a
function of a large lengthscaleX and a long timescaleT. The
behavior of Eq.~14! is well understood: periodic patternsA
5A0 exp(iqX) are stable provided that the wave numberq
lies within the Eckhaus bandq2,1/3 @14#. However, there
are many instances@15# where the onset of pattern formatio
is not governed by Eq.~14!. In the presence of Galilean
invariance, an amplitude equation must be included fo
large-scale mode@5#. Previous work@8,10# has reached a
variety of conclusions about the small-r scaling of the solu-
tions, which we attempt to resolve below.

We now consider how Eq.~14! may appropriately be ex
tended to capture the instability of periodic patterns and
chaotic behavior of Eq.~5!. The natural approach, following
the standard methods used to obtain Eq.~14!, is to write

u;eA~X,T!exp~ ix !1c.c.1e f ~X,T!, ~15!

whereX5ex andT5e2t. However, this leads to the follow
ing inconsistent amplitude equations:

AT5A14AXX2uAu2A/362 i f A/e2~ f A!X , ~16!

f T5 f XX2uAuX
22 f f X , ~17!

incomplete versions of which have been given previou
@5,6,10#. The appearance of the factore21 in Eq. ~16! indi-

,

FIG. 3. Mode amplitudes of the first, ninth, and tenth Four
components for the simulation shown in Fig. 2. The initial slo
development of the pattern is followed by a rapid instability a
then chaotic behavior at a lower amplitude.
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cates that the scaling~15! is incorrect. However, if the mea
modef is rescaled to make Eq.~16! consistent then a facto
e21 instead multiplies the coupling term in Eq.~17! ~see
@6,16,17#!.

A self-consistent scaling is obtained as follows. Since
growth rate in Eq.~6! is of order e2, we must retain the
scaling T5e2t. If the diffusion terms are to appear in th
amplitude equations, thenX5ex. The leading coupling term
in the A equation appears at the correct order if the lar
scale mode is of ordere2. Finally, the coupling term in thef
equation balances the other terms if theA-mode is of order
e3/2. The correct ansatz to replace Eq.~15! is therefore

u;e3/2A~X,T!exp~ ix !1c.c.1e2f ~X,T!. ~18!

The corresponding asymptotically consistent amplitu
equations are then

AT5A14AXX2 i f A, ~19!

f T5 f XX2uAuX
2 . ~20!

Note that the stabilizing cubic term does not appear in
~19! at leading order. This means that Eq.~19! allows expo-
nentially growing solutions in whichA(X,T)5A0 expT and
f (X,T)50. However, it can be shown that these growi
solutions are unstable, in the following sense. By writi
A(X,T)5A0 expT1b(X,T)1ic(X,T), linearizing inb, c, andf
and seeking solutions with wave numberl, we find

bT5~124l 2!b, ~21!

cT5~124l 2!c2 f A0 expT, ~22!

f T52 l 2f 22i lbA0expT. ~23!

The solution forb is thusb5b0 exp((124l2)T) and sof in-
cludes a term growing as exp@(224l2)T#, which is faster than
the growth of the basic state, for smalll. Thus, the
X-independent solutionA0expT rapidly becomes overtake
by X-dependent perturbations. Numerical simulations of E
~19! and~20! confirm that, in practice, solutions do not gro
exponentially in time like expT, but remain bounded, an
that the dynamics is very similar to that of the original equ
tion ~5!.

According to the new scaling~18!, the amplitude of solu-
tions to Eq.~5! should scale as the 3/4 power of the forci
parameterr. In order to check the range of validity of thi
asymptotic scaling, numerical simulations of Eq.~5! were
carried out over a range of values ofr in a periodic domain
large enough to contain 25 waves. The rms value of
solution was averaged over the time of the simulation. T
results in Fig. 4 show an excellent agreement with the
scaling law over the range 0.01,r ,0.1. For r .0.1, the
growth rate given by Eq.~6! is of a similar order over the
e
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range 0,k,1 and so the asymptotic scaling~18! no longer
holds. Earlier numerical results@8,10# suggested differen
scalings~with the rms value ofu proportional tor @10# or
r 1/2 @8#!.

The analysis so far has concentrated on the partic
pattern-forming equation~5!. However, our results are mor
widely applicable. For a general equation that is first orde
time and satisfies the symmetries~1! and ~3!, the general
form of the amplitude equations~19! and~20! can be written
down. Note that the action of the symmetry~1! is

f→ f 1V, A→A exp2 iVT, ~24!

and that Eq.~3! becomes

X→2X, A→2A* , f→2 f . ~25!

The general form of the asymptotic amplitude equations
therefore

AT5A1AXX2 i f A, ~26!

f T5n f XX2uAuX
2 . ~27!

All other terms permitted by the symmetries are of high
order. Note that there is only one free parameter,n, in the
system, since we can rescaleX, T, A, andf.

In conclusion, we have examined one-dimensional s
tems with Galilean symmetry and a reflection symmet
near a stationary bifurcation with nonzero wave number.
have shown that, in general, a long-wavelength mode de
bilizes the pattern near onset. We have derived asymp
cally consistent scalings for the pattern near onset and
plitude equations that capture the dynamics.

FIG. 4. Log-log plot of rms value ofu averaged over 35 000
time units, from numerical simulations of Eq.~5! with 256 grid
points and a domain size of 157. The dashed lines have slope
1/2, 3/4, and 1 for comparison.
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